
VERA Version 0.31
User Manual and Documentation

Danny Quist, Ph.D.
Los Alamos National Laboratory
Advanced Computing Solutions

February 7, 2011

Contents

1 Introduction 1
1.1 Recommended Hardware . 1
1.2 License and Copyright Information 1

2 Installing VERA 2

3 Ether 2
3.1 Installation Steps . 2
3.2 Setting up a Windows Virtual Machine 3
3.3 Generating Traces . 3
3.4 Generating the Traces . 3
3.5 Trace File Format . 4

4 Intel PIN Based VERAtrace 5

5 VERA GUI and Usage 6
5.1 Loading a Sample Trace File . 6
5.2 Interacting with the Graph . 7
5.3 Identifiying Program Constructs in VERA 8
5.4 Interacting with IDA Pro . 9

1 INTRODUCTION

1 Introduction

VERA is a visualization tool for analyzing compiled executables. It is built on an
OpenGL framework with the wxWidgets package. The current version is only for
use with the Windows XP and higher operating system. This manual will detail the
steps that are needed to run and analyze a sample of malware.

There are two ways to generate trace data for VERA. The first is with the Ether
hypervisor. Ether is a set of patches made to the Xen hypervisor that allows for
covert analysis of running processes. It makes an ideal environment to monitor
and trace running programs. More information is available from the Ether website
1. The next option is to use the VERA Trace Intel PIN module. This is a much
simpler way of running traces and can be used inside any virtual machine. When
available, choose the Ether system for generating traces. Ether is more resilient to
detection over the Intel PIN based Veratrace.

1.1 Recommended Hardware

VERA is implemented using the OpenGL system with the wxWidgets API. In
order to get the best results out of VERA, we strongly recommend you run it on a
machine with a hardware graphics accelerator. The code was developed using an
Nvidia GTX 285 and subsequently tested on a variety of other cards.

1.2 License and Copyright Information

This program was prepared by Los Alamos National Security, LLC at Los Alamos
National Laboratory (LANL) under contract No. DE-AC52-06NA25396 with the
U.S. Department of Energy (DOE). All rights in the program are reserved by the
DOE and Los Alamos National Security, LLC. The U.S. Government retains own-
ership of all rights in the program and copyright subsisting therein. All rights not
granted below are reserved.

This program may be used for noncommercial, nonexclusive purposes for in-
ternal research, development and evaluation and demonstration purposes only. The
right to reproduce, distribute, display publicly, prepare derivative works or compi-
lations thereof is prohibited.

NEITHER THE UNITED STATES NOR THE UNITED STATES DEPART-
MENT OF ENERGY, NOR THE LOS ALAMOS NATIONAL SECURITY, LLC,
NOR ANY OF THEIR EMPLOYEES, MAKES ANY WARRANTY, EXPRESS
OR IMPLIED, OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBIL-
ITY FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS OF ANY

1Ether Website: http://ether.gtisc.gtech.edu

Page 1 of 11

3 ETHER

INFORMATION, APPARATUS, PRODUCT, OR PROCESS DISCLOSED, OR
REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY OWNED
RIGHTS.

2 Installing VERA

Installing VERA is very straight forward. Simply download the package from
Offensive Computing 2 and double-click on the installation file. The files will be
installed into the standard program files directory unless you specify otherwise.

To execute VERA either find the VERA directory in program files and double-
click the wxvera.exe file, or find the shortcut that was placed in your start menu.

3 Ether

Installing the Ether patches to Xen can be an interesting experience. This section
will attempt to aide you in this process. As always please consult with the official
Georgia Tech Ether website for the most up to date information.

3.1 Installation Steps

There are some general steps to install an Ether system. Most of the problems that
many people have are related to trying to compile the source from scratch. To make
this process easier we have provided a precompiled Debian package. This allevi-
ates many of the problems that most are having with the installation. Following
these steps exactly will get you through much of the difficulty.

1. Download and install the Debian AMD64 net installation ISO 3. You’ll need
to get the “Lenny” release of Debian. Also make sure to get the 64-bit ver-
sion installed.

2. Install the required packages for a working Xen system. A complete list can
be found at Offensive Computing 4.

3. Next install the Ether system. There are two methods for doing this: from
source or from a Debian package. We have prepared a Debian package that
may alleviate some of the problems of compiling from source 5.

2http://www.offensivecomputing.net/vera/
3http://www.debian.org/CD/netinst/
4http://www.offensivecomputing.net/ether install packages.log
5http://www.offensivecomputing.net/?q=node/1575

Page 2 of 11

3 ETHER

4. Make sure that the Grub configuration matches your system installation.
While the package we have prepared does a decent job of preparing the
menu.lst file, there are some problems that may arise. Figure 1 has an exam-
ple of a working configuration file.

5. Reboot and verify that your new Xen/Ether system is up and running.

title Debian GNU/Linux, kernel 2.6.26-2-xen-amd64
root (hd0,0)
kernel /boot/xen-3.1.0.gz dom0_mem=1G
module /boot/vmlinuz-2.6.26-2-xen-amd64 root=/dev/sda1 ro quiet
module /boot/initrd.img-2.6.26-2-xen-amd64

Figure 1: An example GRUB menu.lst file for a working Ether installation

3.2 Setting up a Windows Virtual Machine

Creating a virtual machine after Ether is installed can be problematic. There is a
bug that will freeze the installation during the install program’s execution. To get
around this problem, simply boot into a non-Ether patched system when you are
first configuring a VM.

Ensure that you have followed the VM installation instructions from Georgia
Tech 6. Failure to create a proper VM will result in crashes and other problems.
Once your system is installed, you can begin taking traces for use inside of VERA.

3.3 Generating Traces

The primary unit of data that VERA operates on is a trace file. The format for
the traces is the output from the Ether “instrtrace” command. The output gener-
ally contains a listing of addresses and the associated instruction that is executed.
VERA loads this trace file, processes it, then outputs a graph markup language
(GML) formatted file. VERA can display GML files without any additional pro-
cessing.

3.4 Generating the Traces

This section will overview generating traces inside of Ether. The example that will
be used is the notepad.exe file. First, start up a virtual machine inside of your Ether

6http://ether.gtisc.gatech.edu/xen install windows.pdf

Page 3 of 11

3 ETHER

system. Once the OS is booted, the virtual machine ID will be needed. To find
the ID, simply run the “xm list” command. This will display a listing of running
virtual machines. This ID is necessary to run Ether.

Next execute ether using the following command:

ether_ctl instrace # notepad.exe > notepad.trace

Be sure to substitute the “#” with the VM ID from the “xm list” command. This
will generate a text listing of some initial Ether boiler plate, and the instruction
traces used to build the later GML file. Transfer the notepad.trace file to your
analysis machine where VERA is installed. Section 5 details loading the trace files
in the GUI.

3.5 Trace File Format

If you would like to generate your own trace files for use in VERA, they must have
a specific format matching the Ether instruction traces. The beginning of the file
should match the output from Figure 2.

After init:
shared_page_ptr: 0xffff830000fd9000
shared_page_mfn: 0xfd9
domid_source: 0
event_channel_port: 34

Shared Page va: 0x7fde19b77000
Shared Page test:

Page-Sharing is A-OK!

Trying to bind to local port...
Success, bound to local port: 35
Trying to get first pending notification...
Taking off suprious pending notification...
Setting filter by name to: notepad.exe
Execution of Target detected:

Image Base: 0x1000000
Image Size: 0x14000
Entry Point: 0x100739d

Figure 2: The starting boilerplate for an instruction trace.

Page 4 of 11

4 INTEL PIN BASED VERATRACE

Next will be the instruction traces. As shown in Figure 3, the format is a hex
virtual address, that should match the contents of the executable, and the ASCII
representation of the instruction.

100739d: push 0x70
100739d: push 0x70
100739f: push 0x01001898
10073a4: call 0x01007568
1007568: push 0x010075BA
100756d: mov eax, fs:[0x00000000]
1007573: push eax

Figure 3: The contents of the instruction trace portion.

Finally the end of the file should contain the string “Handling sigint” twice.
This denotes the end of a trace. Figure 4 shows an example of this data. Once this
is completed the files should be parsable by VERA and will generate graphs.

1007519: jnz 0x01007522
100751b: push esi
100751c: call [0x1001318]
Handling sigint
Handling sigint

Figure 4: The ending structure of the trace file.

A full sample file can be found on the VERA webpage 7.

4 Intel PIN Based VERAtrace

VERAtrace is a tracing system based on the Intel PIN monitoring framework. It
can be used to generate similar traces as can be found from Ether, but does not re-
quire a full Xen/Ether installation. Traces also include an import resolution system,
which can be displayed in the VERA GUI.

To generate traces, you will need the following files from your VERA installa-
tion directory:

• pin.exe
7http://www.offensivecomputing.net/vera/notepad.trace.gz

Page 5 of 11

5 VERA GUI AND USAGE

• pinvm.dll

• taipin.dll

• veratrace.dll

The above files may be copied to any virtual machine as long as it is running
in 32-bit mode. To run a trace, simply execute the command listed in Figure 5

pin.exe -t veratrace -- \\windows\\system32\\sol.exe

Figure 5: Command line execution of veratrace of the Windows XP Solitaire pro-
gram

The output will be a trace file with the name of the executable (minus the
directory) along with the PID used to run the program. The output of the command
in Figure 5 was the file named “sol.exe-2015.trace”. This file can then be copied to
where you run VERA and processed normally.

5 VERA GUI and Usage

The VERA GUI is a front-end to allow you to quickly visualize and explore a
program’s execution trace. Once you have a trace file generated, VERA can be
used to process and generate a graph. This process converts the trace into a GML
file that can be loaded and explored in the GUI.

5.1 Loading a Sample Trace File

Included in the VERA executable distribution is a sample trace file that contains a
runtime trace of the “notepad.exe” program from a standard Windows XP service
pack 2 installation. To load the program, simply use the open folder in the tool bar
or the “File” “Open” menus and find the trace file named “notepad.trace”.

A separate window will open resembling Figure 6. Two pieces of information
must be entered in these fields. The first is the original executable for the file. This
file is needed to analyze the running sections of the executable to color the graph.
The second piece of information is the name to use to store the GML file. The name
you enter here will be the source for the output names based on the type of graph
you’re looking for. The next options are for processing a graph that has all the
addresses rendered as a node in the graph. Rendering all the addresses as vertices
is referred to as “All Addresses” mode. To only render the beginnings and ends of

Page 6 of 11

5 VERA GUI AND USAGE

Figure 6: The dialog for processing traces within VERA.

basic blocks, select the Basic Block check box. Once you are ready to process the
trace file click the “Finish” button. A new thread will be created to show you the
results of your graph that you have built. Figure 7 shows the results of parsing the
Notepad trace.

Depending on the options, two different graphs can be created. The first will be
the all vertices graph. This will have the name of all-yourgraphname.gml. The sec-
ond is the basic blocks graph. This will have the name of bbl-yourgraphname.gml.
The default behavior is for VERA to load the all- file. If you wish to load the ba-
sic blocks graph, you will need to load the BBL file using the standard file-open
process.

5.2 Interacting with the Graph

Interaction with the generated graphs was designed to emulate many common 2D
navigation systems. If you are familiar with the Google Maps interface it is very
similar to that. There are two methods for moving a graph: First by panning left,

Page 7 of 11

5 VERA GUI AND USAGE

Figure 7: The resulting graph from processing the notepad trace.

right, up, and down. The second is to zoom in and out. All are accomplished with
the mouse key. Table 1 lists each of the controls for interacting with the graph.

Action Mouse Control
Pan Left Left Mouse, drag left
Pan Right Left Mouse,drag right
Zoom In Mouse wheel up
Zoom Out Mouse wheel down
Navigate in IDA Right-click

Table 1: Mouse controls for actions.

5.3 Identifiying Program Constructs in VERA

Various features in the graph correlate to features inside of the code. First, any
series of addresses that have exactly one entrance, and one exit, that are not part
of a loop can be safely considered initialization code. Many of the constructs
also show up in multiple areas of the executable. The initialization portion of the
Notepad graph in Figure 7 shows an initial series of instructions, followed by a
loop prior to entering the main portion of execution. This is a very common shape

Page 8 of 11

5 VERA GUI AND USAGE

that is created by Microsoft compilers.
A section of code that shows a branching operation, such as illustrated in Fig-

ure 8 correlate to a decision point in the program. Please note that if the branch
always takes a single path, the structure will not be shown in the graph. This is
because VERA relies upon traces of execution from the code, and does not note
the possible paths of execution available.

Figure 8: A series of branching operations from the Notepad.exe program.

Whenever a portion of code is executed multiple times, the edges between the
nodes is drawn with a thicker width. This allows for quicker identification of the
most commonly used areas of code. For instance, if a messaging processing loop
is present in a program, that loop will be highlighted. Figure 9 shows a loop in the
Notepad program.

5.4 Interacting with IDA Pro

A new feature in VERA 0.3 is the interaction capability with a program loaded in
IDA Pro. This alleviates the need to separately interact with IDA and manually

Page 9 of 11

5 VERA GUI AND USAGE

Figure 9: A loop with multiple branches inside the Notepad.exe program.

entering the addresses. To initiate a connection to an IDA system, you will need
a couple of things. First, of course, is a copy of IDA Pro. The VERA-IDA plugin
will need to be installed so that you can successfully interact with IDA. You can
download a copy from Offensive Computing 8.

Precompiled versions of the IDA module are available for version 5.6 and later
of IDA Pro. The source code is available for earlier versions of IDA, and you’re
welcome to try to compile it. They are not, however, officially supported.

The plugin should be copied into the “plugins” directory of the IDA Pro instal-
lation directory. Once this has been done, you will need to restart IDA.

Once the module has been installed and IDA has been restarted, you should
see a message in your IDA console that looks very similar to Figure 11. If you do
not see the message then you will need to verify that the IDA plugin was installed
correctly.

To start the IDA Pro server, click on the IDA Pro icon in the toolbar. From
here the server should be started. Next, you will need to figure out the IP address

8http://www.offensivecomputing.net/vera

Page 10 of 11

5 VERA GUI AND USAGE

IDA Pro

(client)

Socket Connection

VERA

(Server)

VM / or Analysis Machine Windows w/ OpenGL

Figure 10: Architecture of the VERA IDA Plugin

Figure 11: IDA console text showing the IDA Pro module loaded correctly.

of your computer that is executing VERA. A TCP/IP connection is made from the
IDA Pro system to the VERA system. This allows you to take advantage of virtual
machines when analyzing the malware. This architecture was chosen to allow for
an IDA Pro instance on a virtual machine talk to VERA running on a machine with
a real hardware graphics accelerator.

Page 11 of 11

